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INTRODUC TION

In clinical settings, dementia diagnosis and treatment monitor-
ing often hinge on cognitive performance assessed through 

neuropsychological tests [1]. Additionally, behavioral and de-
mographic information is used to support these processes [2]. 
Despite neuropsychological and behavioral tests being fre-
quently employed, no worldwide consensus is available on their 
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Abstract
Background: A lack of consensus exists in linking demographic, behavioral, and cognitive 
characteristics to biological stages of dementia, defined by the ATN (amyloid, tau, neuro-
degeneration) classification incorporating amyloid, tau, and neuronal injury biomarkers.
Methods: Using a random forest classifier we investigated whether 27 demographic, be-
havioral, and cognitive characteristics allowed distinction between ATN-defined groups 
with the same cognitive profile. This was done separately for three cognitively unim-
paired (CU) (112 A-T-N-; 46 A+T+N+/−; 65 A-T+/-N+/−) and three mild cognitive impair-
ment (MCI) (128 A-T-N-; 223 A+T+N+/−; 94 A-T+/-N+/−) subgroups.
Results: Classification-balanced accuracy reached 39% for the CU and 52% for the MCI 
subgroups. Logical Delayed Recall (explaining 16% of the variance), followed by the 
Alzheimer's Disease Assessment Scale 13 (14%) and Everyday Cognition Informant (10%), 
were the most relevant characteristics for classification of the MCI subgroups. Race and 
ethnicity, marital status, and Everyday Cognition Patient were not relevant (0%).
Conclusions: The demographic, behavioral, and cognitive measures used in our model 
were not informative in differentiating ATN-defined CU profiles. Measures of delayed 
memory, general cognition, and activities of daily living were the most informative in 
differentiating ATN-defined MCI profiles; however, these measures alone were not suf-
ficient to reach high classification performance.
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usage in relation to distinguishing different biological stages of 
the disease [3].

The current ATN (amyloid, tau, neurodegeneration) research 
framework proposes to classify Alzheimer's disease (AD) based on 
a biological biomarker-based system describing three core groups: 
(1) Aβ burden (amyloid positron emission tomography [PET] or ce-
rebrospinal fluid [CSF] β-amyloid [Aβ42 or Aβ42/Aβ40 ratio]); (2) 
tau pathology (CSF phosphorylated tau [p-tau] or tau PET); and (3) 
neuronal injury (CSF total tau [t-tau], anatomic magnetic resonance 
imaging (MRI), fluorodeoxyglucose (FDG)-PET) [4]. While the rec-
ommendation is to use the ATN classification in research contexts, 
efforts are needed to translate its purpose to clinical practice [5]. 
Diagnosing AD purely based on biological biomarkers leads to 
practical issues including generalization, metric performance, ac-
cessibility, and thresholds determination [6]. A prior study deter-
mined that the ATN classification lacks sufficient consistency for 
clinical use, reporting insufficient agreement among biomarkers 
within different pathophysiological categories and noted varia-
tions in correlation at different stages of the AD continuum [7]. 
Another study also showed the ATN system's lack of accuracy for 
certain non-AD dementias [8]. The International Working Group 
for the clinical diagnosis of AD has recently reported that the di-
agnosis of AD should be based on biological biomarker evidence, 
but also on clinical phenotype [6].

Investigating which demographical, behavioral, and cognitive 
domains are most relevant in distinguishing biologically defined 
profiles might be crucial, even to rule out other non-degenerative 
causes when biomarkers are not available [9]. Previous studies have 
found that the assessment of cognitive domains, such as attention, 
processing speed, executive function, memory, and language, can 
help identify biological disease stages [10, 11]. For instance, two 
studies have identified delayed recall as the best predictor in dis-
tinguishing between amyloid-positive and amyloid-negative mild 
cognitive impairment individuals [12, 13]. In cognitively normal in-
dividuals, subtle impairments in everyday functioning were associ-
ated with higher amyloid burden and worse cognition [14]. A major 
challenge remains to individuate which specific clinical variables are 
better at distinguishing ATN classified profiles within preclinical and 
prodromal stages of AD.

In the current study, we aimed to classify ATN-defined bio-
marker groups with the same cognitive profile (first: cognitively un-
impaired [CU] with A-T-N-, A+T+N+/− or A-T+/-N+/− profiles and 
second: mild cognitive impairment [MCI] with A-T-N-, A+T+N+/− or 
A-T+/-N+/− profiles) using demographic, behavioral, and cognitive 
characteristics and a data-driven approach. Additionally, we aimed 
to identify which demographic, behavioral, and cognitive charac-
teristics are most relevant to identify these biologically defined 
subgroups within these two cognitive profiles. Our findings will be 
particularly relevant in contexts where biological biomarker assess-
ment is not available. They will also inform on whether, in different 
stages of the disease, further biological biomarker assessment has 
clinical relevance.

METHODS

Data were obtained from the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) database (http://​adni.​loni.​usc.​edu/​data-​sampl​es/​
acces​s-​data/​). The datasets used in this study were downloaded 
from the ADNI-1, ADNI-2, and ADNI-Grand Opportunity (ADNI-GO) 
databases between 28 August 2018 and 15 September 2020; fur-
ther information on the files used to extract cognitive, biological 
biomarker, and behavioral data used in this study can be found in 
the Supplementary Material. Participant eligibility criteria for the 
three ADNI phases are identical and can be found in the ADNI 
general procedures manual (Alzheimer's Disease Neuroimaging 
Initiative-I; http://​adni.​loni.​usc.​edu/​metho​ds/​docum​ents/​). ADNI 
was approved by the institutional review boards of all participating 
centers. Written informed consent was obtained from all patients. 
For more information see www.​adni-​info.​org.

Participants

Participants included in the ADNI study were between the ages 
of 55 and 90 years, had completed at least 6 years of education, 
and were free of any significant neurological disease other than 
MCI or AD. Exclusion criteria were defined by the ADNI study 
protocol [15]. Additional inclusion criteria for this study were: 
availability of biological biomarkers to define the ATN profile 
(see Section  2.3); no missing demographic, behavioral, or cogni-
tive data; Hachinski score <4; absence of depression as defined by 
the Geriatric Depression Scale 15 (GDS 15 <9); Clinical Dementia 
Rating scale (CDR) score <1. Based on the criteria of Petersen 
(2004) [16] and using the CDR score, participants were considered 
either CU (CDR = 0) or as having MCI (CDR = 0.5). This resulted in 
668 cases with sufficient data for the analyses (see inclusion flow 
in Figure 1).

Demographic, behavioral, and cognitive variables

Sample demographical characteristics, including age, education, 
sex, ethnicity, and marital status, were assessed. Behavioral and 
cognitive measures were assessed by trained staff according to 
standardized procedures described in the ADNI manual. Details 
on these variables are available in the ADNI manual (ADNI_
GeneralProceduresManual.pdf (usc.edu)); the 27 variables are 
also described in Table S1 and the reference to each test can be 
found in Supplementary Material. The functional and behavio-
ral variables included: the Functional Assessment Questionnaire 
(FAQ); the Everyday Cognition – Participant Self-Report; Everyday 
Cognition – Study Partner Report; the Neuropsychiatric Inventory; 
and the Geriatric Depression Scale 15. The cognitive variables in-
cluded were the following: the Alzheimer's Disease Assessment 
Scale-Cognitive Subscale (ADAS-COG) 13; Montreal Cognitive 
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Assessment (MoCA) (adapted from the official MoCA Instruction 
Guide, Version November 12, 2004 © Z Nasreddine); ADAS-COG 
4; Clock Drawing Test, Trail Making Test A and Trail Making Test 
B; Logical Memory Test Immediate Total; Rey Auditory Verbal 
Learning Test (RAVLT); Auditory Verbal Learning Test Delayed 
30 min (AVDEL30); RAVLT Recognition; RAVLT Forgetting; RAVLT 
Immediate; Category Fluency Test adapted from the Consortium 
to Establish a Registry for Alzheimer's Disease (CERAD) adminis-
tration and scoring procedures for Verbal Fluency and the Boston 
Naming Test (30 items).

Biological biomarker ATN thresholds and groups 
classification

For biological biomarker classification, ATN biomarker thresholds 
have been used as previously validated for the ADNI cohort and 
summarized in Table  S2. Briefly, the florbetapir-PET standardized 

uptake value ratio (SUVR) ≥1.11 was used to determine Aβ disease 
burden [17], CSF p-tau levels ≥23 pg/mL were used to determine tau 
disease burden [18], and FDG-PET SUVR ≤1.21 was used to deter-
mine neurodegeneration or neuronal injury [19].

In our study, we classified CU and MCI individuals from three 
biomarker categories: A-T-N- (normal AD biomarkers); A+T+N+/− 
(with AD biomarkers); A-T+/-N+/− (non-AD pathological change). In 
doing this, we aggregated A+T+ individuals (A+T+N- and A+T+N+, 
both considered part of the Alzheimer's continuum biomarker cat-
egory) and patients with A- (A-T+N-, A-T+N+, A-T-N+, considered 
in the non-AD pathological change biomarker category), as shown 
in Table  2 of Jack et  al. [4]. In the CU A+T+N+/− group, 32 were 
A+T+N- and 14 were A+T+N-. In the MCI A+T+N+/− group, 109 
were A+T+N- and 114 were A+T+N-. In the CU A-T+/-N+/− group, 
41 were A-T+N-, 17 were A-T-N+, and 7 were A-T+N+. In the MCI 
A-T+/-N+/− group, 30 were A-T+N-, 45 were A-T-N+, and 13 were 
A-T+N+.

We then classified individuals also based on their syndromal 
cognitive stage (CU, MCI, and dementia). From the biomarker cat-
egories we decided to only keep participants belonging to groups 
that represented at least 20% of the sample within the syndromal 
cognitive stage. Therefore, the A+T-N- (Alzheimer's pathological 
change), representing only 11.6% of CU and 8% of MCI, and the 
A+T-N+ (Alzheimer's and concomitant suspected non-Alzheimer's 
pathological change), representing 2% of CU and 5.6% of MCI, 
were excluded.

Therefore, after assessing each biomarker and designating a pro-
file based on the cut-off values previously mentioned, each partici-
pant was classified into one of six groups derived from the National 
Institute on Aging-Alzheimer's Association (NIA-AA) research 
framework [4]: (1) CU with normal biomarkers (CU A-T-N-); (2) CU 
with AD biomarkers (A+T+N+/−); (3) CU with non-AD pathological 
change (A-T+/-N+/−); (4) MCI with normal biomarkers (MCI A-T-N-); 
(5) MCI with AD biomarkers (A+T+N+/−); and (6) MCI with non-AD 
pathological change (MCI A-T+/-N+/−).

Machine learning approach: data exploration, 
classification, and ADASYN

The analysis was done separately for the three CU groups and the 
three MCI groups. For this step, 27 features based on demographic 
(n = 5), behavioral (n = 5), and cognitive (n = 17) characteristics were 
used for both analyses (see Table S1) and a script was made in py-
thon version 3.7 using scikit-learn version 0.32.

For data preparation, first, a table was created with the infor-
mation of the participants who fulfilled the inclusion criteria. This 
table consisted of 27 columns, where each column represents a 
variable, and 668 rows, where each row represents a participant 
(sample). Second, 20-fold stratified cross-validation was used to 
split the data into training and test sets. Here, data from one fold 
was used as test set and the remaining information was used for 
training the model. Third, the data were transformed to follow a 

F I G U R E  1 Inclusion flow diagram. ATN, amyloid, tau, 
neurodegeneration classification; CDR, Clinical Dementia Rating 
scale; CU, cognitively unimpaired; GDS, Geriatric Depression Scale; 
MCI, mild cognitive impairment; PET, positron emission tomography.
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normal distribution, using the ‘Quantile Transformer’ from scikit-
learn. Finally, the data were normalized, using the ‘Normalizer 
Transformer’ from scikit-learn, which normalizes samples individ-
ually to have unit norm.

For classification, a random forest classifier was used. Random 
forest is an ensemble technique which uses decision trees and av-
eraging to improve predictive performance [20]. Random forest 
was chosen as a classifier because it provides insight into the most 
relevant features used for classification, thereby contributing to 
‘explainable artificial intelligence’. This characteristic of random 
forest could be used to identify whether demographic, behavioral, 
or cognitive data are more relevant for the classification task. 
Three hundred decision trees were employed. The Gini index was 
used as the separation criterion on each node to decrease node 
impurity [21]. One of the drawbacks of the current dataset is the 
imbalance of the classes (see Table 1). To overcome this problem 
an adaptive synthetic sampling technique (ADASYN) [22] was 
used, oversampling the minority classes, thereby obtaining a bal-
anced dataset.

Additionally, to investigate the contribution of features to the 
classification of each of the MCI groups, Shapley values were calcu-
lated by using the SHAP (Shapely Addictive exPlanations) method 
[23]. SHAP values aim to explain the prediction of a class (or a group) 
by computing the contribution of each feature to the prediction; 
more information on their usage in the context of AD can be found 
elsewhere [24]. Positive SHAP values indicate that for that class the 
feature is improving accuracy, while negative values instead indicate 
that the feature impacts the accuracy in distinguishing that class 
negatively.

Finally, to evaluate the classifier performance and taking into 
account the nature of the imbalance dataset, a group of evaluation 
metrics are reported: balance accuracy (arithmetic mean of sensi-
tivity and specificity); sensitivity (true positive rate, i.e., proportion 
of participants with positive test who were correctly identified); 
specificity (true negative rate, i.e., proportion of a negative test re-
sult predicted by the model); precision (positive predictive value, 
i.e., proportion of participants with a positive test of all positive 
predicted cases); and the f1 score (harmonic mean of precision and 

recall) [25, 26]. There is no single metric to evaluate performance 
with an imbalanced dataset, therefore these several evaluation met-
rics are reported.

This process was repeated 100 times to obtain the overall per-
formance of the classifier, and tables and figures were created using 
descriptive statistics of this information.

Statistical analysis

Statistical analysis was performed using SPSS 28 (SPSS Inc., Chicago, 
IL, USA). Sample characteristics (age, education, sex, ethnicity, mari-
tal status) were compared between the three CU groups and then 
between the three MCI groups using one-way analyses of variance 
(ANOVA) for continuous normally distributed variables (means and 
standard deviations displayed) and chi-square tests for categorical 
variables (percentages displayed). All analyses considered a signifi-
cance level of α = 0.05.

RESULTS

A total of 668 participants were categorized into six ATN groups: 
112 CU with A-T-N-; 46 CU with A+T+N+/−; 65 CU with A-
T+/-N+/−; 128 MCI with A-T-N-; 223 MCI with A+T+N+/−; 94 MCI 
with A-T+/-N+/−. Sample characteristics are displayed in Table 1. 
CU individuals with A-T-N- profile were significantly younger than 
CU individuals with A+T+N+/− (p < 0.001) or A-T+/-N+/− profile 
(p = 0.02) and included more Black (p = 0.02) and Hispanic partici-
pants (p = 0.02). The CU individuals with A+T+N+/− profile com-
prised fewer females (p = 0.01) and White participants (p = 0.02) 
compared to the other two CU groups. MCI individuals with A-T-
N- profile were significantly younger than MCI with A+T+N+/− or 
A-T+/-N+/− profile (both p < 0.001) and were more educated than 
MCI with A+T+N+/− (p = 0.01) or A-T+/-N+/− profile (p = 0.04); 
they also included more divorced participants and more partici-
pants with unknown marital status compared to the other two 
groups (p < 0.001).

Actual
Balanced 
accuracy Sensitivity Specificity Precision f1-score

Model 1

CU A-T-N- 0.54 (0.01) 0.46 (0.02) 0.63 (0.02) 0.55 (0.02) 0.50 (0.02)

CU A+T+N+/− 0.59 (0.01) 0.47 (0.03) 0.72 (0.02) 0.30 (0.02) 0.37 (0.02)

CU A-T+/-N+/− 0.50 (0.02) 0.26 (0.03) 0.74 (0.02) 0.29 (0.02) 0.27 (0.02)

Model 2

MCI A-T-N- 0.71 (0.01) 0.69 (0.01) 0.72 (0.01) 0.50 (0.01) 0.58 (0.01)

MCIA+T+N+/− 0.69 (0.01) 0.62 (0.01) 0.76 (0.01) 0.72 (0.01) 0.67 (0.01)

MCI A-T+/-N+/− 0.54 (0.01) 0.25 (0.02) 0.84 (0.01) 0.29 (0.02) 0.27 (0.02)

Abbreviations: ATN, amyloid, tau, neurodegeneration classification; CU, cognitively unimpaired; 
MCI, mild cognitive impairment.

TA B L E  2 Classification performance 
metrics for the cognitively unimpaired and 
mild cognitive impairment groups.
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Classification of CU groups

The classification of the three CU groups, over 100 iterations, led to 
a balanced accuracy of 39%. Table 2 displays the classification per-
formance metrics and Table 3 the confusion matrix. Classification-
balanced accuracy on group level was 54.0% (1.0%) (mean and 
standard deviation) for the CU A-T-N- group, 59.0% (1.0%) for the 
CU A+T+N+/− group, and 50.0% (2.0%) for the CU A-T+/-N+/− 
group. Considering the low accuracy achieved, feature importance 
was not evaluated for these three CU groups.

Classification of MCI groups

The classification of the three MCI groups, using leave one pa-
tient out over 100 iterations, led to a balanced accuracy of 52%. 
Table  2 displays the classification performance metrics and 
Table 3 the confusion matrix. Classification-balanced accuracy on 
group level was 71.0% (1.0%) for the MCI A-T-N-  group, 69.0% 
(1.0%) for the MCI A+T+N+/− group, and 54.0% (1.0%) for the MCI 
A-T+/-N+/− group.

TA B L E  3 Confusion matrix of the averaged 100 iterations for 
the two models.

Prediction

CU A-T-N-
CU 
A+T+N+/−

CU 
A-T+N+/−

Actual

CU A-T-N- 45.95 (2.4) 24.11 (2.0) 29.95 (2.4)

CU A+T+N+/− 35.30 (2.6) 46.87 (3.5) 17.82 (2.8)

CU A-T+/-N+/− 38.86 (2.1) 35.55 (2.1) 25.58 (2.6)

Prediction

MCI A-T-N-
MCI 
A+T+N+/−

MCI 
A-T+N+/−

Actual

MCI A-T-N- 68.66 (1.2) 14.98 (0.9) 16.36 
(1.2)

MCI A+T+N+/− 22.39 (0.8) 61.70 (0.8) 15.92 (1.0)

MCI A-T+/-N+/− 40.00 (1.9) 35.36 (1.6) 24.64 (1.9)

Abbreviations: ATN, amyloid, tau, neurodegeneration classification; CU, 
cognitively unimpaired; MCI, mild cognitive impairment.

F I G U R E  2 Feature importance for the mild cognitive impairment (MCI) groups. ADAS, Alzheimer's Disease Assessment Scale (Cognitive 
Subscale); AVTOTB, Auditory Verbal Learning Test Total B; AVDEL30, Auditory Verbal Learning Test Delayed 30 min; AVDELTOT, Auditory 
Verbal Learning Test Delayed Total (Recognition); BNTTOTAL, Boston Naming Test Total; CATANIMS, Category Fluency Test Animals; 
CLOCKSCO, Clock Drawing Test; ECog, Everyday Cognition; FAQ, Functional Assessment Questionnaire; LDELTOTAL, Logical Memory 
Delayed Total; LIMMTOTA, Logical Memory Test Immediate Total A; MoCA, Montreal Cognitive Assessment; NPI, Neuropsychiatric 
Inventory; RAVLT, Rey Auditory Verbal Learning Test; TRABSCORA, Trail Making Test A; TRABSCORB, Trail Making Test B. Lines with the 
same color represent variables belonging to the same cognitive domain.
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Feature importance MCI groups

Random forest allows us to obtain the most relevant features used 
in the classification of patients in one of the three MCI groups. In 
Figure 2 the features are presented from the most to the least rel-
evant, displaying the median of relative feature importance over 100 
iterations (relative feature importance is also reported in Table S3). 
Logical Delayed Recall was the most relevant feature (explaining 16% 
of the variance), followed by the Alzheimer's Disease Assessment 
Scale-Cognitive Subscale 13 (14%), Everyday Cognition Informant 
(10%), and Alzheimer's Disease Assessment Scale 4 (9%). Race and 
ethnicity, marital status, and Everyday Cognition Patient were not 
relevant (0%).

SHAP values, showing the contribution of each feature in dis-
tinguishing each MCI group, are displayed in Figure  3 and are re-
ported in Table  S4. Logical Delayed Recall, MoCA, and Auditory 
Verbal Learning Test Delayed 30 min contribute most to the predic-
tion of the MCI A-T-N- group, while Alzheimer's Disease Assessment 
Scale-Cognitive Subscale 13, Everyday Cognition Informant, and 
Alzheimer's Disease Assessment Scale 4 contribute most to the pre-
diction of the MCI A+T+N+/− group.

DISCUSSION

This study aimed to classify CU and MCI individuals with A-T-N-, 
A+T+N+/−, or A−T+/-N+/− profiles, based on demographic, behav-
ioral, and cognitive characteristics. Several previous studies have pre-
dicted cognitive profiles based on biological information [27–31]. Our 
approach instead is to use clinical information to classify ATN-defined 
cognitive profiles to bridge the biological and clinical classification of 
cognitive impairment and to inform clinicians in case of biomarker as-
sessment inaccessibility. With our set of variables, the best classifica-
tion was achieved for the three MCI groups and especially for the MCI 
A+T+N+/−, for which 71% balanced accuracy was reached. Lower bal-
anced accuracy was achieved for the other two MCI groups and all CU 
groups. Two measures of delayed memory, one of general cognition, 
and one of activities of daily living, when answers were filled in by 
the informant, were the most important variables to classify the three 
MCI groups, although balanced accuracy was still not high enough for 
clinical utility. Marital status, sex, and activities of daily living, when 
filled in by the patient, were the least relevant.

From our study we find that behavioral and cognitive assess-
ments from a single domain are not enough to classify cognitive 

F I G U R E  3 Mean SHAP values for the classification of mild cognitive impairment (MCI) groups. Mean SHapley Additive exPlanations 
(SHAP) values are used to investigate the contribution of all features to classifying each MCI group. Negative values indicate that the 
feature is contributing negatively to the prediction of classifying that group, while positive values indicate that the variable is improving 
the prediction for classifying that group. It should be noted that – in line with our classification results – only few features improve the 
prediction for classifying the MCI A-T+N+/− group (green). ADAS, Alzheimer's Disease Assessment Scale (Cognitive Subscale); AVDEL30, 
Auditory Verbal Learning Test Delayed 30 min; AVDELTOT, Auditory Verbal Learning Test Delayed Total (Recognition); AVTOTB, Auditory 
Verbal Learning Test Total B; BNTTOTAL, Boston Naming Test Total; CATANIMS, Category Fluency Test Animals; CLOCKSCO, Clock 
Drawing Test; ECog, Everyday Cognition; FAQ, Functional Assessment Questionnaire; LDELTOTAL, Logical Memory Delayed Total; 
LIMMTOTA, Logical Memory Test Immediate Total A; MoCA, Montreal Cognitive Assessment; NPI, Neuropsychiatric Inventory; RAVLT, Rey 
Auditory Verbal Learning Test; TRABSCORA, Trail Making Test A; TRABSCORB, Trail Making Test B.
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profiles with different biological profiles; instead, the classifier 
requires information from several domains to achieve higher bal-
anced accuracy. Our results are in line with a substantial amount 
of literature pointing at delayed memory and daily functioning as 
important domains for the diagnosis of MCI due to AD [12, 32]. In a 
previous study, a naming task together with wordlist forgetting and 
recognition, phonemic fluency, and cognitive estimations were the 
best measures to distinguish between individuals from the AD con-
tinuum and those with non-AD change [33]. Changes in everyday 
functioning are also seen throughout the AD continuum [34]. In a 
study comparing MCI groups with different pathologies, those with 
non-AD pathology were shown to have worse performance in al-
most all cognitive domains compared to MCI with negative biomark-
ers, but better performance than MCI with positive amyloid and 
neurodegeneration biomarkers [35]. Also, delayed recall was identi-
fied as the best predictor in distinguishing between amyloid-positive 
and amyloid-negative MCI individuals [12, 13]. A recent study has 
found that a measure of semantic verbal fluency, and not semantic-
phonemic discrepancy, was predictive of abnormal CSF phosphory-
lated tau 181 levels [36]. Importantly, the measures used in the study 
of Aiello et al. [36] are specific measures of semantic fluency which 
are not normally incorporated in routine neuropsychological batter-
ies. Therefore, to reach higher balanced accuracy in predicting an 
individual's biological status, more domain-specific cognitive mea-
sures might be needed.

Notably, among the three MCI groups, MCI individuals with 
positive AD biomarkers are best distinguished. This might sug-
gest that while cognitively equally classified as MCI, in MCI with 
positive AD biomarkers a more advanced disease status is also 
reflected in clinical changes compared to the other two biomarker 
groups. These results also suggest that biomarker assessment in 
individuals with MCI might add clinical relevance. In case of inac-
cessibility to biomarker evaluation, the cognitive tests identified 
in our study as most relevant for MCI biomarker profile classifica-
tion can provide further information on whether AD biomarkers 
are present. This is important since for individuals with positive 
AD biomarkers the risk of progression to dementia increases [37, 
38]. It should be kept in mind, however, that the clinical variables 
used are not sufficient to reach high balanced accuracy in dis-
tinguishing MCI individuals with different biomarker profiles and 
therefore the distinction between groups solely with these mea-
sures is not yet feasible.

The MCI group with amyloid negativity, but with tau and or 
neurodegenerative markers positivity, is the group with the worst 
classification performance. Looking at the SHAP values, we see 
that a measure of general cognition (ADAS13) is the one con-
tributing negatively to the classification of that group. We could 
speculate that non-AD pathological changes might lead to a more 
complex cognitive profile or that the variables used were originally 
developed to detect impairment in individuals presenting with 
Alzheimer's pathological changes. This aligns with findings from a 
previous study, which highlighted a lack of accuracy in classifying 
non-AD dementias [8]. The complexity also arises from the diverse 

clinical and pathological entities underpinning these profiles, in-
cluding primary age-related tauopathy, argyrophilic grain disease, 
and Lewy body disease [39].

Whether CU individuals with positive biomarkers should be 
described as preclinical AD [40] or merely as at risk for cognitive 
impairment [6] is still currently debated. A previous study on the 
ADNI dataset found that AD biomarkers were found in 36% of a 
cognitively normal group [41], and another study established that 
concentrations of total and phosphorylated tau and amyloid-beta 42 
in CSF were highly related to future development of AD in individ-
uals with MCI [42]. Our results show that based on demographic, 
behavioral, and cognitive information, it is not possible to distinguish 
between CU individuals with different biomarker profiles. This sug-
gests that demographic, behavioral, and cognitive measures are not 
sufficient to distinguish changes in biological status when cognitive 
impairment is not present yet and, therefore, that the definition of 
biomarker profiles for CU individuals might have limited added value 
in clinical contexts. It should also be noted that these tests were 
developed several decades ago and were aimed at distinguishing CU 
individuals from individuals with dementia, while the characteriza-
tion of biomarker profiles is recent. Reduced thresholds in cognitive 
testing made it possible to increase sensitivity for subtle cognitive 
changes, but reduced specificity as several other disorders could be 
the cause of such changes such as psychiatric or metabolic disorders 
[6]. In CU individuals, subtle impairments in everyday functioning 
have been related to higher amyloid burden and worse cognition 
[14]; additional studies involving CU individuals with different bio-
marker profiles are thus still required.

The precision in detecting individuals with MCI increases when 
a full neuropsychological examination is added, and for instance 
when adding the ADAS-COG to the Mini-Mental State Examination 
(MMSE) [43]. The need to use tests assessing specific cognitive do-
mains rather than global cognitive composites has been extensively 
discussed [44, 45]. Yet, for treatment monitoring, most studies only 
use general tests of cognition [46, 47]. Future efforts are needed 
to establish which tests are more sensitive in measuring treatment 
efficacy in participants with different biological statuses. In the case 
of positive effects of a specific treatment aimed at ameliorating cog-
nitive complaints, knowing which cognitive domains benefited from 
treatment is also of paramount importance [45].

A strength of our study is that our included variables are almost 
all among the tests recently recommended to diagnose mild neu-
rocognitive impairment in Europe [48]. The work done on the har-
monization of neuropsychological tests usage could be extended 
by providing recommendations also based on the biological stage 
of disease. In future work we want to incorporate biological infor-
mation into our models (i.e., APOE status, structural and perfusion 
MRI) currently not incorporated in the ATN framework, to see if 
that added information would improve classification-balanced ac-
curacy, especially for the CU groups. Vascular and inflammatory 
factors are currently not included in the ATN framework, but sev-
eral expert panels have recommended their inclusion. Additionally, 
a recent study has shown that measures of hippocampal volume 
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    |  9 of 11CLINICAL CLASSIFIERS OF BIOLOGICALLY DEFINED PROFILES

and white matter hyperintensities, neither considered in the ATN 
classification, were important predictors in different stages of the 
AD continuum [49].

A limitation of the current study is that the current machine 
learning model first needs to be externally validated. Additionally, 
biomarker threshold determination is still under debate. In our 
study we used thresholds determined on the ADNI population; fu-
ture studies will therefore need to use thresholds specific to their 
population. In our study, some of the ATN profiles were aggregated 
in their corresponding biomarker categories described in the 2018 
NIA-AA Research Framework [4]. This was necessitated by the lim-
ited number of ATN profiles within the three non-AD pathological 
change categories and in two groups of the Alzheimer's continuum. 
While this aggregation may have introduced greater heterogeneity 
to the groups, potentially influencing our findings, the groups that 
have been aggregated still belonged to the same biomarker cat-
egory group described in the NIA-AA Research Framework. Thus, 
we believe that this choice has not impacted our results. Also, 
there was insufficient data to include the A+T-N- and the A+T-N+ 
profiles. It is important to acknowledge that ATN profiles are not 
static, and their longitudinal changes remain incompletely under-
stood. Consequently, future studies exploring the dynamic nature 
of ATN profiles are important for a comprehensive understanding. 
Moreover, we do not specifically detect cognitive and behavioral 
test score thresholds to distinguish one subgroup from the other, 
which could help to give more specific recommendations on tests 
usage, once balanced accuracy increases. Which specific scores of 
the individuated tests should be considered informative about bio-
marker profile remains a question.

Overall, the demographic, behavioral, and cognitive variables 
inserted in our model were not able to distinguish three CU ATN 
subgroups. Measures of delayed memory, general cognition, and 
activities of daily living were informative in classifying ATN-defined 
MCI profiles, although not yet sufficient to reach high accuracy. 
Future efforts are therefore needed to obtain new behavioral and 
cognitive variables which are more sensitive in distinguishing pro-
files with different biological biomarker statuses.
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